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The velocity autocorrelation function is derived from the mean-squared displacement measured on a colloi-
dal suspension of particles with hard-sphere-like interactions. It decays to zero from below and follows a
stretched exponential function of delay time for the thermodynamically stable suspension. For the metastable
suspension a power-law decay emerges. The results are discussed in terms of the classical Lorentz gas and the
model that describes diffusion confined to one dimension. With the aid of these models, the experimental
results provide a characterization of the dynamical heterogeneities which are observed microscopically, and an
explanation for the enhanced resistance to flow and diffusion usually found in undercooled fluids upon
approaching the glass transition.
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I. INTRODUCTION

Colloidal suspensions with hard-sphere-like interactions
show a first order transition from colloidal fluid to an irides-
cent crystal �1� as well as a change in dynamical properties
that is commonly identified with the glass transition �2�. The
attraction of colloidal suspensions for the experimentalist is
that crystallization generally occurs sufficiently slowly to be
resolved in real time. Moreover, the nucleation rate, or life-
time of the metastable fluid suspension, is very sensitive to,
and indeed can be controlled by, small changes in the distri-
bution of particle radii �3,4�. On the other hand, the suspen-
sion’s dynamics, as expressed by the time correlation func-
tion of the particle number density fluctuations, is
comparatively insensitive to the details of the particle size
distribution �PSD� �3�. This fortuitous influence of the PSD,
or polydispersity, has been exploited, though not always in-
tentionally, in measurements of crystallization kinetics and
particle dynamics.

Of course the same applies to computer simulations of
simple atomic fluids. A one-component fluid of ballistic hard
spheres, for example, when only slightly undercooled—i.e.,
when its volume fraction exceeds the known freezing value,
� f =0.493, by only a few percent—crystallizes too fast to
calculate its dynamical and structural properties. Here too,
polydispersity is introduced to delay nucleation �5,6�. How-
ever, since it is clearly advantageous to know the location of
the equilibrium phase boundaries, whatever system is under
investigation, this delay must not be indefinite. In very broad
terms, a polydispersity between approximately 5 and 10 %
appears to satisfy these requirements.

Many recent studies on colloidal systems, of both hard
spheres and particles with finite range interactions, have been
directed toward gaining insight into the mechanism respon-
sible for the glass transition �7�. Computer simulations �8�
and optical microscopy �9–11� expose a picture of heteroge-
neous dynamics, particularly evident at the elevated particle
number densities near the glass transition, in which the ma-
jority of particles are seen to be confined to domains or clus-
ters that are separated by comparatively mobile interstitial
particles. As the suspension’s volume fraction is increased,

the probability that a cluster percolates the system also in-
creases. This, as shown recently, decreases the frequency of
the shear stress that can be supported �11�.

Recent dynamic light scattering �12,13� and molecular dy-
namics studies �6� of colloidal and ballistic hard-sphere sys-
tems, respectively, expose qualitative differences between
the thermodynamically stable ���� f� and metastable
���� f� fluids. In particular it was found that on traversing
the freezing volume fraction, � f, from below, negative
power-law tails develop in the velocity autocorrelation func-
tion. It was also argued that such power-law tails are incom-
mensurate with purely viscous flow �6,13�.

So, by closing off avenues by which the material can flow,
both microscopy and spectroscopy expose routes toward so-
lidification. The question is whether there is any consistency
between the two approaches. Can their respective results be
buttressed so as to furnish a complete explanation of the
glass transition? We attempt a step in this direction in this
paper by analyzing the particles’ non-Markovian displace-
ment statistics, as manifested by the slow, negative decay of
the velocity autocorrelation function and the stretching of the
mean-squared displacement, in terms of the Lorentz gas �14�
and a model that describes diffusing particles confined to one
dimension �15�.

II. PROCEDURES AND THEORY

Dynamic light scattering procedures and the preparation
and characterization of colloidal particles are described ex-
tensively in previous work �12,16,17�, and are summarized
here only briefly. The suspension comprises a mixture of
polymer particles �98% by weight, polydispersity �7%� and
silica particles �2% by weight, polydispersity �2%� of the
same average radius �R=200 nm�. The polymer particles
consist of a copolymer core of methylmethacrylate �MMA�
and tri-fluoroethylacrylate �TFEA�. This particular copoly-
mer is chosen so that the refractive index of particles can be
closely matched to a single suspending solvent, cis-decalin.
The hard-sphere character for both types of particles is pro-
vided by a stabilizing coating of poly-12-hydroxystearic acid
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�PHSA�, about 10 nm thick, bonded to the surface. Both
phase diagrams and direct measurements of the force be-
tween the stabilizing layers �18� show that these particles
behave as near perfect hard spheres.

The effective hard-sphere volume fractions, �, of the
samples were determined by equating the observed freezing
volume fraction �determined by weight�, with the known
freezing value, � f =0.494, of the perfect hard-sphere system.
This gives melting and glass transition volume fractions of
�m=0.535±0.005 and �g=0.565±0.005, respectively. The
volume fractions measured are in the range 0.16����g. In
the undercooled samples, ���� f� samples are tumbled for
several hours prior to the measurements to break up any
crystals which may be present. Measurements are made on a
time scale of 1000 s, long before there is evidence of any
nucleation. This is demonstrated in several ways: �i� during
the time of these measurements no Bragg reflections become
evident by eye; �ii� the static structure factors show no dis-
cernable crystal-like features; �iii� in all cases the measure-
ments are independent of the commencement time of the
measurements �17�—in other words the measurements were
made over a time window in which the suspension’s proper-
ties are �quasi-� stationary.

Distances are expressed in units of the �average� particle
radius, and delay times in units of the Brownian characteris-
tic time, �b=R2 / �6Do�=0.021 s. Do is the diffusion coeffi-
cient of a freely diffusing particle. The composition and re-
fractive indices of the mixture are such that fluctuations in
the laser light scattered from the particle number density
fluctuations are entirely suppressed, so that the measured in-
termediate scattering function �ISF� equates with the self-
ISF, given by

Fs�q,�� = �exp�iq · �r����� , �1�

where q is the wave vector and �r��� the particle displace-
ment in the time interval �. Measurement of Fs�q ,�� is de-
tailed in other papers �16,17�.

Only the zero wave vector, or Gaussian, limit of the ISF

Fs�q → 0,�� = Fs
�G��q,�� = exp�− q2��r2����/6� �2�

is considered here. ��r2���� is the particle mean-squared dis-
placement �MSD�. The other property of interest is the ve-
locity autocorrelation function �VAF� which is defined by
�19�

Z��� = − lim
q→0

1

q2

d2

d�2Fs�q,�� =
d2

d�2 ��r2���� . �3�

There are several other quantities required for analysis and
discussion of the data. The first is an index that gives the
maximum degree of stretching of the MSD, calculated from
the minimum value of the logarithmic slope of the MSD:

� = min�d log10��r2����
d log10 �

	 . �4�

We refer to this quantity as the stretching index. The delay
time and root-mean-squared displacement �RMSD� where
this occurs are designated as �m and Rm, respectively.

Two other quantities are the short- and long-time self-
diffusion coefficients,

Ds = lim
�→0

��r2����
�

and Dl = lim
�→�

��r2����
�

, �5�

where the limits “0” and “�” mean the lower ��10−3 s� and
upper ��103 s� limits of the experimental time window. Fi-
nally, we will make reference to the average gap

Rc = 
	R

	
�1/3

− 1 �6�

between two particles, where �R=0.64 is the volume fraction
at random close packing. Given Rc, the average interval, �c,
between diffusive particle encounters is then read from the
MSD.

III. RESULTS

Some of the results shown below have been reported pre-
viously �12,13�, but they are shown here for completeness
and because they are required for further analysis below.
Typical MSDs are shown in Fig. 1. Points ��c ,Rc

2�, indicating
the time and mean-squared distance between particle en-
counters, and ��m ,Rm

2 �, where the logarithmic slope of the
MSD is a minimum, are also shown. This minimum, or
stretching index, �, is set out against volume fraction, �, in
Fig. 2. Note that ��� f��1/2 and ���→�g�=0. Figure 3
shows the variation of �m, �c and the ratio �m /�c with �, and
Fig. 4 the variation of Rm, Rc and the ratio Rm /Rc with �. The
ratios �m /�c and Rm /Rc express the time and length scales
that characterize the collective, non-Markovian processes in
the suspension relative to the time and length scales that
characterize the diffusion of particles in their neighbor cages.
The latter process is also characterized by the short-time dif-
fusion coefficient, Ds=Rc

2 /�c �20�.
For volume fractions less than about 0.2, stretching of the

MSDs is weak and the VAFs, calculated from them by Eq.

FIG. 1. �Color online� Double logarithm plot of the MSD vs
delay time for volume fractions and stretching indices indicated.
The lower and upper bold triangles denote the points �Rc

2 ,�c� and
�Rm

2 ,�m�, respectively. The heavy dashed line is the MSD for the
ideal dilute suspension. The fits are made using Eq. �12�. See text
for further details.
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�3�, apart from being negative, contain little systematic infor-
mation. As shown in Ref. �13�, at higher volume fractions
minima can generally be discerned at around �=10−2. Be-
yond these minima the VAFs decay monotonically to the
noise floor from below—there is no indication of Z��� be-
coming positive as the upper limit of the experimental time
window is approached. Our focus here is on just this slow
negative decay shown by way of double logarithm plots of
Z��� versus ���10−2� in Fig. 5�a�, for the thermodynami-
cally stable suspension ���� f� and in Fig. 5�b� for the meta-
stable suspension ���� f�.

For the thermodynamically stable suspension the VAFs
show no systematic variation with volume fraction and they
are seen to be compatible with the stretched exponential,

Z�� � �v� = − B exp�− 
 �

�d
�
	 , �7�

with B=0.5±0.1, 
=0.3±0.02, and �d=1.0�±0.3��10−3.
This is not the case for higher volume fractions, ��� f �Fig.

5�b��. Significant deviations from Eq. �7� are apparent, even
with allowance for errors in the parameters and noise on the
data. As is illustrated in Fig. 5�c�, for a volume fraction
��=0.533� about midway between � f and �g, only the initial
part of the decay of the VAF is compatible with a stretched
exponential. Beyond ��1 it appears that the power law

Z�� � 1� = − 
 �

� f
�−

�8�

provides a better description of the data. The index  of the
best fitting power laws to the data, from an arbitrary lower
limit of log10���=0, is shown in Fig. 6. Outside the consid-
erable uncertainties, the line of best fit to  versus � suggests
a systematic increase from �1.5, at � f, to �2, at �g. The
quantity 2−� is also plotted in Fig. 6. The fitting of straight
lines to the indices  and 2−� is not meant to imply either of
them depends linearly on �. The scaling time � f �shown in
Fig. 7� shows no variation with volume fraction, and yields a
value of log10�� f�=−1.2±0.3. The other quantities in Fig. 7
are discussed below.

IV. DISCUSSION AND ANALYSES

A. Consistency checks

Whatever the nature of the dynamical mode, characterized
by the algebraic decay in the VAF �Fig. 5�, it emerges around
the first order transition point, � f. Note also, in Fig. 3, that
around the same volume fraction the delay time �m starts to
increase and, from Fig. 4, that the RMS displacement at �m
saturates. Of course, experimental noise and the limited reso-
lution in � does not allow us to infer categorically the occur-
rence of a qualitative change in the particle dynamics at � f
precisely. In this respect a more definitive inference can be
drawn from molecular dynamics studies of ballistic hard
spheres �6�.

In view of the potential implications of the above results
with regard to the dynamics of the first order freezing tran-
sition, we perform a number of consistency checks and, by

FIG. 2. Stretching index, �, defined in Eq. �4�, vs volume frac-
tion. The dashed vertical lines are located at the freezing and glass
transition volume fractions � f =0.493 and �g=0.565. These lines
are shown in all figures where � is the abscissa.

FIG. 3. Logarithm of characteristic delay times vs volume frac-
tion. See text for further details.

FIG. 4. Characteristic displacements vs volume fraction. See
text for further details
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means of these, see in what other ways the thermodynami-
cally stable and metastable suspensions can be differentiated.
We begin by examination of the power-law decay of the
VAF. The data shown in Fig. 5�b�, obtained by double dif-
ferentiation of the MSDs, have suffered significant noise am-

plification. This is reflected in the noise on the parameters, 
and � f, that characterize the power law. An alternative ap-
proach is to calculate the MSD, according to Eq. �3�, by
double integration of Z��� by assuming, for ���m and �
�� f, that Z���=−K�−, where K is a constant. This gives the
following general expression for the MSD:

��r2�� � �m�� = �− K
�2−

�1 − ��2 − �
+ K�� + K�	 , �9�

provided �2 �21�. By our definition ��r2��m��=Rm
2 . Thus it

is convenient to rewrite the MSD in terms of Rm and �m:

��r2�� � �m�� = �C
 �

�m
��

+ C�
 �

�m
� + C�	Rm

2 , �10�

where �=2− and C+C�+C�=1 by definition. Another
boundary condition comes from the logarithmic slope of the
MSD:

(a)

(b)

(c)

FIG. 5. �Color online� Logarithm of the modulus of the VAF vs
logarithm of delay time: �a� For values of � ��� f� and correspond-
ing values of � ��1/2� indicated; �b� values of � ��� f� and corre-
sponding values of ���1/2� indicated; �c� for �=0.533. The dashed
line in all cases is the stretched exponential �Eq. �7�� that best
describes the VAFs for ��� f. The dashed-dotted line in �c� is the
stretched exponential that passes through Z��� for ��1. The solid
line in �c� is the power law �Eq. �8�� that passes through Z��� for
��1.

FIG. 6. Exponent  of the power law, Eq. �8�, and 2−�, where
� is the stretching index defined in Eq. �4�, vs volume fraction. The
upper and lower lines are lines of best fit to  and 2−�.

FIG. 7. Logarithm of characteristic delay times vs volume frac-
tion. The open diamonds represent values of � f obtained by fitting
power laws directly to the VAFs, whereas the closed diamonds are
obtained by the analysis with Eq. �12�. See text for further details.
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d log10��r2����
d log10 �

=
Rm

2

��r2�����C�
 �

�m
��

+ C�
 �

�m
�	 .

�11�

In Eq. �4� we defined this quantity to be equal to the stretch-
ing index � at �=�m. Using this gives the second relation-
ship: �=C�+C�. Finally, from Eq. �4� it is also clear that
��r2��m����� at �=�m. Thus, �=�.

Use of these relationships gives C�=��1−C� and
C�= �1−C��1−��, with which Eq. �10� can be expressed as
follows:

��r2�� � �m�� = �C
 �

�m
��

+ ��1 − C�
 �

�m
�

+ �1 − ���1 − C�	Rm
2 . �12�

This can now be fitted to the MSDs using the known values
of �, �m, and Rm, with C as the only free parameter. Typical
least-squares fits are included in Fig. 1 and the values of C
are shown in Fig. 8. A number of consistency checks are now
performed:

�i� The algebraic form of the VAF with the following
expression for the scaling time:

� f = � �m
�

C��1 − ��Rm
2 	1/��−2�

�13�

is obtained by equating the second derivative of Eq. �12�
with Eq. �8�. Figures 6 and 7 show the values for 2−� and
� f, respectively. These confirm that  �=2−�� varies from
�3/2 at �=� f, to �2, at �=�g, and that
log10�� f�=−1.14±0.07, compared with log10�� f�=−1.2±0.3
obtained above by directly fitting power laws to the VAF,
shows no systematic variation with �.

�ii� At long times the term linear in � in Eq. �12�, i.e., the
term corresponding to diffusion, dominates for delay times
���x, where

�x = 
 C

��1 − C��
1/�1−��

�m. �14�

This is the delay time where the self-ISF, given by Eq. �2�,
crosses over from a stretched exponential to an exponential
function of �. For �=0.533, for example, where we find C
=0.8 and �=0.33, �x�42�m. Increasing the measurement
time sufficiently so that the term nonlinear in � reduces to a
few percent of the total, results in the onset of crystallization.
Thus the diffusive limit, which must be attained in the limit
�→� for a system in thermodynamic equilibrium, is not
attainable in the metastable suspension because it can only
equilibrate by crystallizing.

Having said this does not prevent us from taking the limit,
�→�, in the right-hand side of Eq. �12�. Given that ��1,
one arrives at the following expression for the long-time self-
diffusion coefficient:

Dl =
��1 − C�Rm

2

�m
. �15�

In Fig. 9 the values of Dl obtained by this procedure are
compared with those obtained directly from the long-time
exponential decay of the self-ISF �12,17�. The differences,
bordering experimental uncertainty, are small but consistent.
However, in view of the difficulty, mentioned above, in ac-
tually reaching the long-time diffusive limit in practice, es-
pecially at the elevated volume fractions considered here, we
regard the values of Dl obtained by means of Eq. �15� as the
better estimates. The product, Dl�x, is also shown in Fig. 9.
Given that Dl and �x both characterize the long-time expo-
nential decay of the self-ISF it comes as no surprise that Dl�x
shows comparatively little systematic variation with �.

One also sees from Fig. 7 that �x is quantitatively consis-
tent with the ratio �m /�c. So there appears to be a symmetry
about the point �Rm

2 ,�m�: the time required for memory of the
collective processes, exposed at �m, to be lost corresponds to
the number of diffusive encounters involved in these pro-
cesses. This loss of memory leads to Markovian exploration
of configuration space, characterized by the coefficient Dl.
However, this form of exploration results from the central

FIG. 8. Coefficient of the first term in Eq. �12� vs volume frac-
tion. The solid line is the line of best fit. Typical error bars are
shown.

FIG. 9. Long-time self-diffusion coefficients from previous
measurements compared with those calculated from Eq. �15�.
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limit theorem whose efficacy, in turn, derives from the fact
that the linear dimension of the scattering volume is much
larger than the extent of spatial correlation in the �amor-
phous� suspension. �Of course the ensemble average over
phases, q·�r, and the spatial limit, q→0, are implicit.� So,
in the context of the present analysis at least, the existence of
Dl for the metastable suspension does not imply that, on
increasing �, the displacements of an arbitrarily chosen par-
ticle become Markovian. The fact that the long-time diffu-
sive limit has been obtained from Eq. �12�, while the first
term is retained, indicates that the structures responsible for
the stretching of the MSD, exposed at �m, remain intact dur-
ing the course of the experiment, i.e., for as long as metasta-
bility or quasistationarity of the suspension prevails.

Since an expression for the MSD cannot be obtained ana-
lytically where the VAF obeys a stretched exponential, con-
sistency checks analogous to the above cannot be applied to
the thermodynamically stable suspension. However, in this
case, Dl is found to be proportional to Rm

2 /�m �20�. So, for the
metastable suspension, the long-time diffusion coefficient is
weighted by an extra factor, ��1−C�, that decreases with �, a
factor which, as we have just seen, characterizes structures
that do not dissipate on time coarse graining. Reliance on,
and ensuing interpretation of, the index � is only possible so
long as the time scales of thermal kinetics and density fluc-
tuations are well separated, i.e., so long as stretching of the
MSD is not compounded by the scalar, or Gaussian, thermal
kinetics.

B. Dynamical heterogeneity

The Lorentz gas �14� is perhaps the best known model
whose asymptotic dynamics is characterized by a negative
algebraic decay of the VAF, �−�−�1+d/2�, where d is the di-
mension of the system. In this model the positions of the
targets are fixed and consequently momentum is not con-
served. Of course one may argue that the suspension is not
even remotely similar to a Lorentz gas, particularly one hav-
ing dimension less than three. However, there is a statistical
equivalence of this model and that aspect of the non-
Markovian particle excursions manifested by the negative
algebraic VAF. Translating this into dynamical analogy sug-
gests that packing constraints in the metastable suspension
are such that some particles do not respond to the thermally
activated momentum currents in the suspending liquid, or
they are to some extent at least impaired from doing so. Of
course the momentum current cannot be read directly from
these DLS data. But one can ask, nonetheless, whether or not
the observed particle displacement statistics are compatible
with the known manifestations of momentum conservation.

The reasoning used in Ref. �13� to arrive at the conclusion
that momentum conservation is violated in the metastable
suspension runs as follows: Let the function −f��� express a
particular �non-Markovian� contribution to the slow decay of
the VAF in the experimental time window. Then, as �→0,
the corresponding particle motions can couple to diffusing
shear modes in the suspending liquid, and satisfy the condi-
tion Z�0��0, only if f��� is a weaker function of � than �−3/2.
Of course, this �positive� power law will be recognized as the

classical hydrodynamic “tail” that manifests the presence of,
or response to, diffusing transverse momentum currents �22�.
Accordingly, the displacements observed for the thermody-
namically stable suspension, expressed by the stretched ex-
ponential decay in Eq. �7�, are consistent with diffusing shear
modes. Indeed, with the reasoning adopted here one arrives
at the predicted value for the amplitude of the classical hy-
drodynamic “tail” �13�. However, that part of the VAF given
by the power law, Eq. �8�, with the index, �3/2, is not
compatible with normal viscous flow. From this we infer
that, in the metastable suspension, the movements of some
particles are so constrained that their ability to respond to
diffusing shear modes in the suspending liquid is impaired.
And, in analogy with the Lorentz gas, the presence of these
trapped particles effects a negative feedback on the direction
of motion of the mobile particles. This feedback is indepen-
dent of the degree of damping of the particles’ motion. We
propose, therefore, that the consequential enhancement of the
persistence of the VAF results in the crossover, seen in Fig.
5�c�, from a stretched exponential to an algebraic function of
the delay time.

Although, as we have seen, the long-time diffusion coef-
ficient exists, the structural constraint on diffusing shear
modes means that the viscosity, in the limit of zero shear
rate, does not. The implied departure from the reciprocity of
the diffusion coefficient and the Newtonian viscosity, ex-
pressed by the Stokes-Einstein equation, has been estab-
lished in other work �23� by analyses of experimental dy-
namic viscosities and diffusivities of metastable hard-sphere
suspensions.

The picture in which some particles are trapped in clusters
with the remaining more mobile particles necessarily con-
fined to the interstitial channels is familiar to us from numer-
ous microscopic studies �8–11�. To be confident that these
clusters are not crystal nuclei, we appeal to kinetic studies of
similar systems. First, between � f and �g the amplitude of
the VAF power law varies by only a factor of 10. Kinetic
experiments, on the other hand, show that nucleation rate
densities vary by three to four orders of magnitude over the
same range �24,25�. If crystallites were the cause of the ve-
locity reversals observed here, one might expect the variation
in the amplitude of the power law to be comparable with the
many orders of magnitude found for the variation of the
nucleation rate density.

Second, we note that the negative power law sets in at, or
very near to, � f =0.494. By contrast, kinetic studies of the
growth of crystals show that for volume fractions just above
freezing, 0.494���0.51, no homogeneous crystallization
is evident even on time scales of 105 s, two orders of mag-
nitude longer than the measurements made here �24,25�. The
fact that the algebraic decay of the VAF is already clearly
evident at �=0.5, where homogeneous crystallization is
never observed, conclusively demonstrates that the presence
of crystallites cannot explain these results.

Another clue about this heterogeneous dynamics and, in
particular, the qualitative distinction between the thermody-
namically stable and metastable suspensions, derives from
the stretching index �. From Fig. 2 one notes that �=1/2 at
� f. So that aspect of the particle movements exposed at �m is
that for which the MSD grows in proportion to �1/2 or,
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equivalently, the VAF in proportion to −�−3/2. Another model
for which the VAF decays in just this manner comprises
�diffusing� particles subject to the single file condition �SFC�
�15,26�. The asymptotic result for this case is

ZSF��� = −
S

2
�D

�
�−3/2. �16�

Here D is the diffusion coefficient and S is the average gap
between the particles in the file. Equating Eq. �16� and Eq.
�8�, with =3/2, gives

� f = 
S2D

4�
�1/3

. �17�

A consistency check is readily performed. Substituting into
the right-hand side of Eq. �17� S=Rc�� f�=0.09 �from Eq.
�6�� and D=Ds�� f�=0.17 �from the data� one obtains � f

=0.05 �or log10 � f =−1.3�. This value for the scaling time is
consistent with that obtained from the power-law analysis of
the VAF in Secs. III and IV A. Thus, the non-Markovian
movement exposed at the freezing volume fraction can be
described entirely by the asymptotic displacement statistics
of a percolating file of particles. Particles thus constrained
are, in view of the discussion above, at the threshold of their
ability to couple to diffusing shear modes.

Values of 1, 1
2 , and 0 for the index �, respectively, indicate

diffusing particles, particles subject to the SFC, and particles
that are trapped. So, in view of Fig. 2 the point, � f, of the
first order transition acts as a dynamical pivot where there is
an exchange of diffusing and trapped particles. For 0��
�� f where, according to Fig. 2, 1���1/2, the particles’
movements can be described by a nonlinear combination of
diffusing particles and particles subject to the SFC. Again, it
must be stressed that this is what is exposed at �m. For much
shorter delay times, say ���c, excluded volume effects are
not exposed and all particles appear to diffuse. The coupling
of particles subject to the SFC and diffusing particles means
that for delay times much longer than �m, where all memory
of excluded volume effects has been lost, all particles are
also seen to diffuse.

In the metastable suspension, 	 f ����g, where 1/2
���0, the dynamics can be described by an interdependent
combination of particles subject to the SFC and particles that
are localized—respectively, contributing fractions 2� and 1
−2� to the MSD. For delay times ���m, the effects of ther-
mal forces have been coarse grained to the noise floor. So
there no effective randomizing process to dislodge the

trapped particles. At �g the system no longer supports a per-
colating file and all particles are localized. While all the par-
ticles are trapped at �g, the root-mean-squared displacement,
Rm, at �m is approximately 10 times the average gap, Rc,
between the particle surfaces. So the dynamical heterogene-
ity is frozen in. This contrasts the situation in the crystalline
phase where all particles are confined to identical Wigner-
Seitz cells and Rm�Rc �27�.

V. CONCLUSION

We propose that the dynamical heterogeneity identified in
microscopic studies is simply a manifestation of the fact that,
when viewed over a given delay time, the movements of
some of the particles in a suspension are blocked by other
particles in their paths. Blockages so experienced are no dif-
ferent from those experienced by particles subject to the
single file condition. This aspect of the collective dynamics
is exposed in the MSD of a colloidal suspension because the
separation of time scales is such that the scalar thermal ki-
netics do not compound stretching of the MSD. For suspen-
sions in thermodynamic equilibrium such blockages are dis-
sipated by Brownian motion. In the metastable suspension
the packing constraints are so severe that Brownian forces
are no longer able to dissipate all of the blockages—some
particles remain trapped in clusters. Then for ���c, i.e., for
delay times far greater than those which characterize the av-
erage interval between diffusive encounters, when the local
motions of the trapped particles contribute no further to the
MSD, the clusters appear rigid, not unlike the grains in a
granular fluid. And in their inability to respond to the thermal
agitation, the grains act as momentum sinks.

If the grains, or more specifically the particles within
them, cannot dissipate the thermal stresses applied by the
suspending liquid then, under such action the grains may pile
up and percolate the system. Here, as in Ref. �11�, one ar-
rives at the structures that may support low frequency elastic
modes. So, the presence of trapped particles allows diffusing
shear modes to be exchanged for �low frequency� propagat-
ing shear modes. In addition, the long-time diffusion coeffi-
cient is reduced, relative to that of the thermodynamically
stable suspension, by a factor that characterizes the trapped
particles.
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